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The generalized Ohm’8 law for weakly ionired plasma, ae ie well known, har 

the farm 

j+jxov’=o(E+vxB) 
eBt 

WC=, 0) 

Here 0 is the electron cyclotron ireqwncy, T ir the free flight time 
of’ the electron. The magnitude of cu depends on the concentration of neu- 

tral particles, and therefore the occurrence ot a concentration gradient 

leadr to a diatortion of’ the current lines in comparison with their dirtribu- 

tion in a homogeneour medirar. The influence of &enmity Sluctuationr on 

current flow was studied in paper6 Cl gnd 23, where, in particular, it w&8 
noted that, when QG ir not raall CaPu‘OU with Unity, the effect of non- 

homogeneities depends esrentially on their actual dirtributlon In apace, 

When oz 2 1 the dirtribution of CUFmnt ir, generally speaking, non- 

homogeneous. However for sectioned electrodea, if the length of the elec- 
trodes along the flow ir rignificantly less than the dirtance between them, 

the Hall current in incompreraible liquids can be neglected [33. The 

occurrence of a non-one-dimensional current dirtributlon owing to the varia- 

tion of 07 in a compressible liquid under the inilUenCe ot a magnetic field 
is also unimportant because the density gradients which appear are perpendi- 

cular to the direction of current and therefore weakly influence its magni- 
tude. In thebe cases, lor ducts of constant cross-section with aufiiciently 

small length of sectioning, the one-dimensional equations are applicable. 
If however the duct cross-section vary, ar, for example, with flow in nosclea, 
or the duct walls are uneven, then non-one-dimensional flow ariree because 
of the appearance of velocity components perpendicular to the duct axie, and 

407 



108 B. V. Illa~cv 

the occurrence of non-uniform density distribution. Aa is shown in the 

present paper, small nonhomogtntitits in density on the current path lead to 

intense variations in it, and the one-dimensional equations become nonappli- 

cable with sufficiently large 07 even in the cast of sectioned electrodes. 

We will examine the influence of flow nonhomogeneities in the example of a 

ametric two-dimensional nozzle with slowly varying cross-section, and in 

the example of subs.onic laminar flow in a duct with a profile having 

sufficient curvature. 

We restrict ourselves to the cane of sectioned electrodes and will assume 

the conductivity to be constant. The equations of magneto-hydrodynamics, 

taking into account the Hall current, have the form 
div pv = 0, P(vV)v=-vp+jxB, 

j+jxb= G(-vV(P+VXW, div j = 0 (2) 
Hera 9 is the electrical potential. 

Accounting for the joint influence of the variation in nozzle section and 

the magnetic field on the flow is rather difficult; therefore for simplicity 

we attune that the hydrodynamic influence on the flow, due to the variation 

in etction, ir greater than the magneto-hydrodynamic influtnct. The magnetic 

field 8howt an trrstntial effect on the flow over a length of the order of 

pv / aB=. If we examine the flow over a smaller distance (i.e. if we con- 

sider a length oi section smaller than this characteristic length), then we 

may neglect the influence of the current and potential on the distribution 

of the hydrodyntmic quantities. Therefore we will first determine the mag- 

nitude of the corrections to the one-dimensional flow equations without con- 

eidtring the effect of the magnetic field on the flow. Let 
Ii2 

P = PO + Pl,, p = po-+ p1 i PO = Y& s ) PdY 
!/I 

where !/I (4, Yz (4 art the equations of the nozzle boundary. The mean 
velocity of flow is directed along the x -axis. 

We will also aasumt that the overall variation of cross-section is small. 

This allbwt ut to take the average quantities PO, Q, . . * to be slowly 

varying function8 of x and to neglect their derivatives. 

Inttgrat ing the cant fnuity equation 

& (PV,) + 6 (PV,,) = 0 

within the limits yl and Y2 , taking into account the vanishing of the 

normal component of the velocity at the wall, we get the general equation 

of one-dimtnaional motion 

y = yz--1 (3) 

At the atmt time, to the act xacy 

& (PVJO + PO+ 

of q;;dratic8r 

+vo,,+Poay=O (4) 

and the average value of a product equals the product of average values, at 

for example (Pu,)~ = &70. 
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Subtracting (3) from (4) we obtain the equation for determining the 

correction to the continuity equation 

arl, ilV 2'0 dY 
_.&-+~~+~_va;--o (Y =YS-Yyx) $5) 

The remaining equations for the corrections may be obtained analogously n 
Ul’& ifP1 aP1 PO afJ1 --- 

PoVo-$~ = &. : 
%, aP1 

PoVo-&- = -- -= 
a~ 9 ax l,,-aZ w 

In the derivation of Equation (6) it was taken that the correction to the 

pressure is an even function of y Yor a symmetrical nozzle. The boundary 

conditions for the aystem (5) and (6) consist in equating to eero the 

Velocity components normal to the noezle wall. 

Dl>, (Y - y1) = v&/r I dC, Qt (Y = Ys) = %&, 1 dz 

Let the equations of the boundary be given in the form 

Here E is a small quantity and L is some characteristic length. In 

this case the corrections to the mean value of the density are quantities of 

order 8% . 

the system (51, (61, we get 

Indeed, keeping the fundamental terms in the first equation of 

%rJ 
1 dY 

=V-dsy 

that is, the linear distribution y the component of velocity along the 

section. The next equation for v,~, gives 

aPi --_- 
%i 

(8) 

But if the equation for the boundary of the nozele is given in the form 

(71, then according to (8) the corrections to the pressure are of second 

order of smallness in a, just as are the corrections to the mean value of 
the density. Now we may alao convince ourselves that the neglected terms 

in (5) are indeed of higher order in E.. Further, with given distributions 

of hydrodynamic quantities we determine the perturbations in current and 

potent i al. For sectioned electrodes, if the width of the duct significantly 

exceeds the length of the electrodes along the duct, the distributions of 

current and electric field, with conditions of constant velocity and constant 

cross-section, may be considered homogeneous, except in the region of the 

electrodes. Therefore we will look for deviations from a homogeneous dia- 

tribution in the current field, supposing for simplicity that the electrodes 

in each section are short circuited and no average current along the a -axis 

exists . We will consider 6 inversely proportional to the density of neutral 

particles; therefore 

The magnetfc field is directed along the z -axis. 

With these conditions, from the two last equations of system (2), linear- 
icing them and eliminating the current components, we get for the detelwina- 
tion of the perturbation in potential Poisson*8 equation 

a% vo 8Pl 
x------ 

PO ax 
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For the nozzle, formed of non-conducting walls, the perturbation in 

potential also will be determined from Equation (91, where it is necessary 

to aet L’l I/ = 0, d(), / alJ = 0, since the variation in hydrodynamical 
quantities occurs in the I, z. plane. 

Consequently, the corrections to the potential with large 6 are of order 

for nozzles formed of electrodes, or 6s for nozzles formed of non- 

conducting walls. 

nonhomogeneity arises on the 

current path, and simply of order E with nonhomogeneities in a plane per- 

pendicular to the current. Thus for the applicability of the one-dimensional 
equations it is sufficient that s26 4 1 and 1 E 1 < 1 for nozzles with 

duct, one of whose boundaries is sinusoidal, may serve as the most charac- 

teristic example, inasmuch as in many cases the function, giving the equation 

sufficiently far from one another then we can disregard their mutual influ- 

ence (if, for example, one of the walls is wavy while the other is smooth; 

or both walls are wavy). 

The corrections rlx’ a1lJ to the velocity of unperturbed motion v) 

(along the s -axis), if the equation of the wavy wall is expressed in the 

form y = Ed sin kx (the second wall is taken to be smooth), have the form 
&ok 

rlX=ro b ~ eYX1’ sin kx, vly = 
q,kvoe-“l’ cos kx 

b2 = 1 - M”, x= kb, M2 = -!!!f 

We find the changes in pressure and density from the linearized equations 

of system (2) avlx aP1 POVO x = - -7&- 

that is, . 

PI = - 
EokM”p,,e -*I’ 

6 sin kx 

Equation (9) in this case takes the form 

Arp, = voB&iOM2ek2eLX” 
2 cos kx 

~- - 60 sin kx b 
(11) 

The boundary conditions consist in equating to zero the potential pertur- 

bations at the electrodes 
‘PI = 0. y = 0, 1 ($2) 

and setting to zero the components of current along the duct axis at the 

boundaries of the sections 

0, 
w1 

IlX = for -&p = so j$ + B (Yll, - dovo~ -I- 6ov,,) (z = xl, %a) (13) 
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When 6, > i the most essential terms in Expresaion (10) for j,!, become 
((3 / 6,) acp1 f L)L, and in the expression for #i,, , the term (o / 6,) 
3% I 8Y. These terms, generally speaking, are of order F&Ji. Indeed, 

the boundary conditions (12) and (13) (if the order of the terms in (13) is 

taken into account) reduce to the simpler conditions: 9, = 0 on the bound- 

aries of the rectangle z1 < z < zz, 0 < y < 1. The solution to Poisson’s 

equation in this case can be written in the form 
ccl 

(pm = 1 (,%a -f- a,,ij (~2 +l,“) 

sin kzlsinha, (z - 52) + sin kza sinha, ( z1 - z) 

sinh,a, (q - 51) 
- sin 1~2 

(in the computation it assumed that xl>i). 

On the electrodes the moat eaaential term in Expression (10) for i,,,, 

that is to say (o / 6,) / (&pl / az) , vanisher, however the current i,,r , 
generally speaking, is not small. The occurrence of isolated currents (of 

order z&S,) leads to a disaipation of flow energy. The magnitude of the 

current is determined by the Mach number, by the method of sectioning. 

Thus, the presence of nonhomogeneities in the distribution of quantitiea 

over the duct croaa-section with sectioned electrodes leads to the essential 

corrections to the one-dimensional flow equations with large UT, in parti- 

cular if the duct walls possess sufficient curvature. The magnitude of the 

current perturbations are determined by the magnitude of the perturbations 

in density, For nozzles with slowly decreasing cross-section the corrections 

to the current (with (~7)~ > 1) are of order E%lX, if E is the 

nozzle inclinat fon angle. In subsonic lamlnar flow the density perturbations 

due to a wavy wall, are of order Q/A (J. is the wave length, sc its 

amplitude), and the current perturbations are of order ~‘,,oT j h (in relation 

to the currents in a duct with constant cross-section). The Mach number of 

the flow has an essential influence on the magnitude of density perturbations 

and, consequently , on the perturbations in current. These perturbationa in 

subsonic flow decrease with decreasing Mach number as ;‘ll’. 

The author thanks A.A. Vedenov and E.P. Velikhova for discussions of the 

work. 
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