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The generalized Ohm's law for weakly ionised plasma, as is well known, has
the form
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Here o is the electron cyclotron frequency, T is the free flight time
of the electron. The magnitude of ®T depends on the concentration of neu-
tral particles, and therefore the occurrence of a concentration gradient
leads to a distortion of the current lines in comparison with their distribu-
tion in a homogeneous medium. The influence of density fluctuations on
current flow was studied in papers [] and 2), where, in particular, it was
noted that, when OT, is not small compared with unity, the effect of non-
homogeneities depends essentially on their actual distribution in space.

When 0T =1 the distribution of current is, generally speaking, non-
homogeneous. However for sectioned electrodes, if the length of the elec-
trodes along the flow is significantly less than the distance between them,
the Hall current in incompressible liquids can be neglected [3]). The
occurrence of a non-one-dimensional current aistribution owing to the varia-
tion of ®wt in a compressible liquid under the influence of a magnetic field
is also unimportant because the density gradients which appear are perpendi-
cular to the direction of current and therefore weakly influence its magni-
tude. In these cases, for ducts of constant cross-section with sufficiently
small length of sectioning, the one-dimensional equations are applicable.

If however the duct cross-section vary, as, for example, with flow in noszzles,
or the duct walls are uneven, then non-one-dimensional flow arises because
of the appearance of velocity components perpendicular to the duct axis, and
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the occurrence of non-uniform density distribution. As is shown in the
present paper, small nonhomogeneities in density on the current path lead to
intense variations in it, and the one-dimensional equations become nonappli-
cable with sufficiently large wt even in the case of sectioned electrodes.
We will examine the influence of flow nonhomogeneities in the example of a
symmetric two-dimensional nozzle with slowly varying cross-section, and in
the example of subsonic laminar flow in a duct with a profile having
sufficient curvature.

We restrict ourselves to the case of sectioned electrodes and will assume
the conductivity to be constant. The equations of magneto-hydrodynamics,
taking into account the Hall current, have the form

divpy=0, p(VWv=—vyp+jxB, vyp= ‘T—VVP+(T'—1)—

j+ix8=0(—ye+vxB), divj=0 (6= "?:) @)

Here ¢ is the electrical potential.

Accounting for the joint influence of the variation in nozzle section and
the magnetic field on the flow is rather difficult; therefore for simplicity
we assume that the hydrodynamic influence on the flow, due to the variation
in section, is greater than the magneto-hydrodynamic influence. The magnetic
field shows an essential effect on the flow over & length of the order of
pv / oB2, If we examine the flow over a smaller distance (i.e. if we con-
sider a length of section smaller than this characteristic length), then we
may neglect the influence of the current and potential on the distribution
of the hydrodynamic quantities. Therefore we will first determine the mag-
nitude of the corrections to the one-dimensional flow equations without con-
sidering the effect of the magnetic field on the flow. Let
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where ¥, (2), ¥q (7) are the equations of the nozzle boundary. The mean
velocity of flow is directed along the =z -axis.

We will also assume that the overall variation of cross-section is small.
This allows us to take the average quantities Pos Doy + - - to be slowly
varying functions of z and to neglect their derivatives.

Integrating the continuity equation

;% (o) + ;% (pv,) =0
within the limits y, and Yy , taking into account the vanishing of the
normal component of the velocity at the wall, we get the general equation
of one-dimensional motion

72 102 Y] =0, Y=yp2—m {3)
At the same time, to the accgracy of quadratic terms
d apy vl
2z (Po o+ po—g5,— + v 3, 6z 4po—L =0 (%)

and the average value of a product equals the product of average values, as
for example (pv, )y = Polo
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Subtracting (3) from (4) we obtain the equation for determining the

correction to the continuity equation
dvhj Yo dY

9, ve Op3 g 5

The remaining equations for the corrections may be obtained analogously
duy, _ ap; dv, _ ap: am po dp1 6
PP G = T em 1 PP, T T ey 0 ox =V g, oz 6

In the derivation of Equation (6) it was taken that the correction to the
pressure is an even function of y for a symmetrical nozzle. The boundary
conditions for the system (5) and (6) consist in equating to zero the
velocity components normal to the nozzle wall.

vy (¥ = y1) = vedyy [ de, vy, (¥ = Yg) = vedys / dz
Let the equations of the boundary bve given in the form

Y1,0= ez /L) 0

Here ¢ is & small quantity and L is some characteristic length. In
this case the corrections to the mean value of the density are quantities of
order #? ., Indeed, keeping the fundamental terms in the first equation of

the system (5), (6), we get
v, =p 1 4y
WY
that is, the linear distribution y the component of velocity along the

section., The next equation for vy, &ives
B oy 3z (725 ) ®)

But if the equation for the boundary of the nozzle is given in the form
(7), then according to (8) the corrections to the pressure are of second
order of smallness in £, just as are the corrections to the mean value of
the density. Now we may also convince ourselves that the neglected terms
in (5) are indeed of higher order in &.. Purther, with given distributions
of hydrodynamic quantities we determine the perturbations in current and
potential. For sectioned electrodes, if the width of the duct significantly
exceeds the length of the electrodes along the duct, the distributions of
current and electric field, with conditions of constant velocity and constant
cross~section, may be considered homogeneous, except in the region of the
electrodes. Therefore we will look for deviations from a homogeneous dis-
tribution in the current field, supposing for simplicity that the electrodes
in each section are short circuited and no average current along the » -axis
exists. We will consider 8 inversely proportional to the density of neutral
particles; therefore

8, = — 61/ 0o

The magnetic field is directed along the z -axis.
With these conditions, from the two last equations of system (2), linear-
izing them and eliminating the current components, we get for the determina-
tion of the perturbation in potential Poisson's equation
v v dv 7

Ix vy 9p1  Bovy Opy 1y 1y 1x
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dz oy
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For the nozzle, formed of non-conducting walls, the perturbation in
potential also will be determined from Equation (9), where it is necessary
to set 0y, = 0,0p /8y =0, since the variation in hydrodynamical
quantities occurs in the z, z. plane.

Consequently, the corrections to the potential with large § -are of order
H2g? for nozzles formed of electrodes, or {§e for nozzles formed of non-
conducting walls, From che(fxpre331on for the correctzons to the current

s 1] \
Iy = T8 ( (pl -+ bvh:) - i:c'&é) (1/0[3 - 8o+~ 3CP1 - "wb’)
it follows that they are of order 25, if nonhomogenelty arises on the
current path, and simply of order £ with nonhomogeneitlgs in a plane per-
pendicular to the current. Thus for the applicability of the one-dimensional
equations it is sufficient that €25 <€1 and | & |<€1{ for nozzles with
slowly decreasing cross-section.

We will consider therefore in greater detail the case of a profile whose
second derivative is not a small quantity. The two-dimensdional flow in a
duct, one of whose boundaries is sinusoidal, may serve as the most charac-
teristic example, inasmuch as in many cases the function, giving the equation
of the wall, may be resolved in a Fourier series. 1In subsonic flow the per-
turbations created by a wavy wall damp out exponentially with the distance
from it (see, for example, 4 ). Therefore if the walls are situated
sufficiently far from one another then we can disregard their mutual influ-
ence (if, for example, one of the walls is wavy while the other is smooth;
or both walls are wavy).

The corrections Ty Vyy to the velocity of unperturbed motion v,
(along the z -axis), if the equation of the wavy wall is expressed in the

form y = g, sin kx (the second wall is taken to be smooth), have the form
Eok

(10)

e sin ke, v, = gokvoe ™Y cos kx

1y
02
Bl — M2, w=kb, M?——0

v,..=7"p

1x

TPo
We find the changes in pressure and density from the linearized equations
of system (2) Po o, o
Pr=1"g, Pr P20 5 = — Gy
that is, gokM2poe %V )
pr=— 3 sin kz
Equation (9) in this case takes the ﬂ;rm .
cos kx .
AQy = vyB§M2ek2e™*Y (—————b—-— — §p sin lm:) (11)

The boundary conditions consist in equating to zero the potential pertur-
bations at the electrodes
¢=0.y=0,1 (12)
and setting to zero the components of current along the duct axis at the
boundaries of the sections

=0, for aq)l = 60 ’a_(P'}' + B ( w 60”“ + 6°v1x> (z ==, %) (13)
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When 0,>>1 the most essential terms in Expression (10) for /,, become
(0 / &) 09, / O, and in the expression for ‘J,. , the term  (0/0,)
o9y / 9y. These terms, generally speaking, are of order £o0gh- Indeed,
the boundary conditions (12) and (13) (if the order of the terms in (13) is
taken into account) reduce to the simpler conditions: ¢, == 0 on the bound-
aries of the rectangle z, <z <z, 0<Cy <l The solution to Poisson's
equation in this case can be written in the form

©
N . ni
QL= 2“1 (Pln (l‘) SiD A,y (an = T>
Tz
2v9BdoM2ek?a, [ sin kz,siahat, (¥ — 2) 4 sin kzgsinna,, (21 — x)

P = T T a ) (2 + a,2) sinht,, (23 — 1)

(in the computation it assumed that xiI>>1).

— gin kx }

On the electrodes the most essential term in Expression (10) for /,
that is to say (g /8,) /(dp,/dz) , vanishes, however the current . ,
generally speaking, s not small. The occurrence of isolated currents (of
order g,k8,) leads to a dissipation of flow energy. The magnitude of the
current is determined by the Mach number, by the method of sectioning.

Thus, the presence of nonhomogeneities in the distribution of quantities
over the duct cross-section with sectioned electrodes leads to the essential
corrections to the one-dimensional flow equations with large T, in parti-
cular if the duct walls possess sufficient curvature. The magnitude of the
current perturbations are determined by the magnitude of the perturbations
in density. For nozzles with slowly decreasing cross-section the corrections
to the current (with (01)?>1) are of order w1, if ¢ is the
nozzle inclination angle. In subsonic laminar flow the density perturbations
due to a wavy wall, are of order go/A (A 18 the wave length, g its
amplitude), and the current perturbations are of order ¢wt/A (in relation
to the currents in a duct with constant cross-section). The Mach number of
the flow has an essential influence on the magnitude of density perturbations
and, consequently, on the perturbations in current. These perturbations in
subsonic flow decrease with decreasing Mach number as 72,

The author thanks A.A. Vedenov and E.P. Velikhova for discussions of the
work.

BIBLIOGRAPHY

1. Velikhov, E.P., Neustoichivost' slaboionizovannoi plazmy s tokom, vyz-
vannaia effektom Kholla. (Instability of weakly ionized plasmas with
currents, excited by the Hall effect). Report of the International
Symposium on methods of MHD energy generation, Newcastle, 1962,

2. Yoshikawa, S., Rose, D.J., Anomalous diffusion of a plasma across a mag-
netic field. Physics Flulds® Vvol.5, No.3, 1962.

3, Hurwitz, H., Kilb, R.W., Sutton, G.W., Influence of tensor conductivity
on current distribution in a MHD generator. J. appl. Phys., Vol. 32,
No. 2, 1961,

4, Liepmann, H.W., Roshko, A., Elements of Gas dynamics (John Wiley, New

York), 1957.
Tranglated by W.T.S.



